SIXTH FORM ACADE

Subject Area: Biology

Curriculum Intent: To instil enthusiasm for science and to develop an interest in further study and careers associated with the subject, in the fields of medicine, engineering, environmental or other science related subjects. Through our courses we aim to equip our students with a detailed body of knowledge as well as help them build the skills required to make progress and achieve success in the scientific enterprise. A key aim is to make our students more powerful abstract, logical thinkers. Within the study of each our science courses, we enable students to develop and demonstrate a deep subject knowledge, an understanding of scientific methods, as well as develop competence and confidence in a variety of practical, mathematical, research, analytical and problem-solving skills. We also aim to extend the cultural capital of our students by increasing their scientific literacy and engagement in discussion and critical evaluation of science in the media. We aim to equip them with an understanding of the interplay between science, technology and society, the role that scientists have had in creating problems and mitigating impacts, as well as how the sciences contribute to the success of the economy and society. Complementary to this, sits our commitment to embed both the academy's professional standards and sense of civic virtue: our aim is for students to understand varying viewpoints of the scientific enterprise as well as consider the consequences and integrity of decisions and actions that they take as scientists, as individuals, and as a community, on the environment, on themselves and on others.

Dates	Content	Assessment	Rationale	
Term 1	 2.1 – 2.6 Basic components of living systems 3.1-3.7 Biological molecules 3.8 – 3.11 Nucelotides & nucleic acids 	PAG 1 - Use of a light microscope at high power and low power, use of a graticule. PAG 9 Chemical tests PC1 - cells and membranes	Students begin their Biology A level by studying cell ultrastructure of all livin up of one or more cells, therefore understanding the structure and function progress onto the structure and function of key biological molecules that are structures and learn how these molecules are used in cell metabolism, stora material. The knowledge gained in this term forms the basis of understandir function in later topics.	
Term 2	4.1 – 4.4 Enzymes 5.1 – 5.5 Plasma membranes 6.1 – 6.5 Cell Division	 PAG 4 Investigation into the effects of enzyme concentration on enzyme activity PAG 5 Temperature and membrane permeability PAG 8 Investigating the rate of diffusion through a membrane PC2 – cells, molecules, nucleotides and nucleic acids and membranes 	Students apply their knowledge from Term 1 to specific processes in the cell organsisms. This includes the importance of enzymes in biological processes with each other via their membranes and the role that cell division plays in r cell development. Throughout these topics links will be made to drug admin of cell development for treating diseases.	
Term 3	Module 3 – Exchange and Transport 7.1- 7.4 – Exchange surfaces and breathing 8.1 – 8.5 – Transport	PAG 2 - Safe use of instruments for dissection of an animal organ PC3 – Foundations in biology, exchange across a membrane and transport in animals	As animals become larger and more active, ventilation and gast exchange system oxygen to, and remove carbon dioxide from, their bodies. Ventilation and gas fish and insects are used as examples of the properties and functions of exch As animals become larger and more active, transport systems become essen waste from, individual cells. Controlling the supply of nutrients and removal activity of the heart and circulatory system. Another biological drawing skills enzymes, movement across a membrane, cell specialisation and tissues requ	
Term 4	9.1-9.5 Transport in Plants Module 4 Biodiversity, evolution and disease 12.1 – 12.7 Communicable diseases, disease prevention and the immune system	PAG 7 - Antibiotic effect on bacterial growth PC4 - Foundations in biology, exchange and transport and diseases	As plants become larger and more complex, transport systems become esse remove waste from, individual cells.Students require prior knowledge of coh molecules from biological molecules cell specialisation, gas exchange, move Organisms are surrounded by pathogens and have evolved defences against used to support these natural defences. The mammalian immune system is i their knowledge of eukaryotes and prokaryotes from cell structure, enzymes tissues. Information from the COVID pandemic is used to recognise the impo	
Term 5	10.1 – 10.8 Classification & Evolution 11.1 – 11.8 Biodiversity	PAG – 3 The calculation of species diversity	Evolution has generated a very wide variety of organisms. The fact that all or allows them to be classified. Classification is an attempt to impose a hierarch of life on Earth. Classification systems have changed and will continue to cha organisms develops. Prior understanding of biological molecules, DNA structure, genetics, disease	
Term 6	Module 6 – Genetics, Evolution and Ecosystems 23.4 – 24.9 Succession, populations & sustainability	Trial exam – Depth and Breadth papers	Biodiversity and ecosystems link and students learn the importance of biodiv how rising populations can change biodiversity. They then move onto the ro biodiversity and local and global resources. Module 5 content links with Mod consequently, in order to help make clear synoptic links module 5 is delivered	

ture of all living organisms. Every organism is made e and function of the cell is fundamental. They then ecules that are the building blocks for cellular abolism, storage and the transfer of genetic f understanding of how organ systems and processes

sses in the cell, that are fundamental to all gical processes, the ability of cells to communicate rision plays in not only growth and repair but also in to drug administration and development, and the roll

ill be taught how to evaluate and form ncing medical techniques, e.g.stem cell ntroduced into the ethics of scientific

sexchange systems become essential to supply tilation and gas exchange systems in mammals, bony nctions of exchange surfaces in animals. become essential to supply nutrients to, and remove s and removal of waste requires the coordinated

I drawing skills opportunity and prior knowledge of nd tissues required.

s become essential to supply nutrients to, and owledge of cohesion and adhesions of water change, movement across a membrane and tissues. fences against them. Medical intervention can be une system is introduced.Students need to draw on cture, enzymes, cell division, cell specialisation and gnise the importance of immunisation.

fact that all organisms share a common ancestry pose a hierarchy on the complex and dynamic variety ontinue to change as our knowledge of the biology of

netics, disease, and biodiversity required

tance of biodiversity as local and global levels and ve onto the role of sustainability in preserving links with Modules 2 & 3 and is tested on Paper 1; le 5 is delivered in its entirety before embarking on

			
	CEIAG: Career pathways in ecology/environmental biology		

PS/CV's: Students encouraged to think about their own sustainablility and empathise with indigenous people who may have lost their land due to unsustainable working practices

module 6. This also enables spaced repetition of module 2, 3 and 5 content throughout the year. There is an emphasis on calculation work with the material covered in these topics before summer as this quickly brings the students up to answering A level standard questions and so builds confidence. 5.1.2 is taught first as this extends the work done in 3.2.3.

Dates	Content	Assessment	Rationale
Term 1	Module 5 Communication homeostasis & energy 15.1 – 15.8 Homeostasis & Excretion 13.1 – 13.10 Neuronal control	PC1 – Y1 content, communication and homeostasis, excretion,	This module looks at key processes in both plants & animals that are fun starts with how animals (particularly humans) maintain a constant interr temperature regulation and excretion as examples. Students study in de involved in the removal of toxic products of metabolism, therefore contr introduces students to the use of electrical systems monitoring and resp steady state. Students learn the fundamentals of how electrical impulses apply this to specific areas of control such as blinking and muscle contract and membrane structure and transport across membranes is needed to operates.
Term 2	14.1 – 14.4 Hormonal control 14.5 – 14.6 Coordinated responses – animals 16.1 – 16.5 Plant responses 17.1 – 17.2 Photosynthesis	 PAG 11 - Daphnia heart rate response to changes in caffeine concentration PAG 6 - Investigation using thin layer chromatography to separate photosynthetic pigments PC2 - Modules 1, 2, 3 and 5 (excluding photosynthesis & respiration) 	Hormonal control studies how specific hormones maintain an internal er osmoregulation as specific examples. Students then study the 'fight or fl nervous and endocrine system often work together to respond to a char The content of sections 16 and 17 concentrates on plant systems. Studen changes in their environment and how these can be used commercially. so that students understand how fundamental this process is in using lig molecules. Prior knowledge of cell membranes, organelles and redox sys
Term 3	17.3 – 17.4 Photosynthesis 23.1 -23.3 Ecosystems – Biomass and energy cycles (module 6) 18.1 – 18.6 Respiration	PAG 12 – Investigating the rate of oxygen production in pondweed Apply investigative approaches Use online and offline research skills Correctly cite sources of information PC3 -	Biomass and energy cycles are delivered after photosynthesis as it links e chains and food webs. Students then appreciate how this initial energy is data to improve efficiency of farming techniques and how initial carbon are also made to climate change. The subsequent teaching of respiration enzyme controlled reactions which result in the release of energy from c
Term 4	Module 619.1 – 19.3 Cellular control20.1 – 20.6Patterns ofInheritance21.1 – 21.5 ManipulatingGenomesCEIAG: Careers in advancing	PAG 10 - Measuring pH change during yoghurt production Use of data logger to collect data PC4 Trial Examination: Past exam questions for Paper 2 (and 3 as appropriate)	The content of sections 19 and 20 links genetic control of an organism's environmental inheritance of characteristics leading to variation within a sections 10 and 11 developing a deeper understanding of how species exconsiderations surrounding the use of artificial selection are discussed, u Manipulating genomes is an exciting topic as students learn relatively ne scientists to develop new treatments for disease, identify pathogens (suc
Term 5	22.1 – 22.3 Cloning 22.4 – 22.8 Biotechnology	Extra PC Assessment: Past exam questions for Paper 3	These two sections explore the role of scientists in the production of art of microorganisms in biotechnology to produce food, drugs and other pr encouraged to debate the ethics of cloning and realise the importance o production. PS/CV's:Students will understand in science and the need to quest
Term 6		External examinations	

hat are fundamental to an organism's survival. It stant internal environment (homeostasis) using study in depth how the kidneys, lungs and liver are all efore contributing to homeostasis. Neuronal control g and responding to any deviation from the body's al impulses carry messages around the body and then scle contraction. Prior knowledge from YR 12 of cell needed to understand how each of the three organs

internal environment using diabetes and 'fight or flight' response to understand how the d to a change in the environment.

ems. Students study the use hormones to respond to imercially. It then goes into photosynthesis in detail in using light energy to synthesise large organic d redox systems is required.

as it links energy transfer from the sun through food al energy is used or lost and how humans can use this ial carbon fixed by photosynthesis is recycled. Links respiration provides a detailed insight into the ergy from organic molecules vis ATP.

rganism's growth and development to genetic and on within a population. It builds on knowledge from a species evolve and new species are formed. Ethical iscussed, using dog breeds as a specific example. Elatively new molecular techniques that are enabling nogens (such as COVID) and use as a forensic tool.

ction of artificial plant and animals clones and the use ad other products. In this section students are portance of microorganisms in both food and drug

ill understand the virtue of ethics leed to question the validity of